Modeling Security Decisions as Games

Chris Kiekintveld

University of Texas at El Paso

.. and MANY Collaborators
Decision Making and Games

- Research agenda: improve and justify decisions
 - Automated intelligent agents
 - Decision support tools

- Challenges
 - Modeling decisions
 - Uncertainty
 - Scalable algorithms
 - Multiple agents
 - Learning

Game Theory
Examples of Games

- Chess
- Backgammon
- Poker
- Auctions
- Sponsored search
- Security
- Network protocols
- Video games
- Financial markets

...
Many Targets Few Resources

How to assign limited resources to defend the targets?

Security Games
Applications: Deployed Security Assistants

Ports & port traffic
US Coast Guard

Airports, flights
TSA, FAMS, Airport Police

Metro trains
LA Sheriff’s/TSA

Environmental Crime
US Coast Guard/World bank
ARMOR: Deployed at LAX August 2007

- “Assistant for Randomized Monitoring Over Routes”
- LAWA: Los Angeles World Airports police
 - Problem 1: Schedule vehicle checkpoints
 - Problem 2: Schedule canine patrols

ARMOR-Checkpoints ARMOR-K9
Available Canines

<table>
<thead>
<tr>
<th>Available Teams</th>
<th>Morning (AM)</th>
<th>Evening (PM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Monday</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Tuesday</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Wednesday</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Thursday</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Friday</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Saturday</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Days to Schedule

- **July, 2009**
- Today: 7/30/2009

- Set All: Morning (AM) 6, Evening (PM) 6

Generate Schedule
Key Issues

- Intelligent, adaptive attackers
 - Surveillance, insider threats
 - *Unpredictable* schedules
- Diverse targets
 - *Varying* consequences, vulnerabilities
 - *Non-uniform*, weighted randomization
- Uncertainty about attackers
 - *Multiple groups with different capabilities*
 - *Uncertain* preferences and motivations
 - *Bayesian* reasoning
Fundamentals: Utilities (Payoffs)

- How can we characterize consequences?
 - Utilities measure magnitudes of preferences
 - Real numbers to measure value

- Decision makers have preferences over outcomes
 - May include indifference relationships
 - Should be complete, rational

“Rational” preferences can be represented as utility functions
Fundamentals: Probabilities

- How can we characterize risk?
 - Probabilities measure *likelihood* of events
 - Formal way to reason about uncertainty
 - Ratio of positive/total events

- Reasons for uncertainty
 - Ignorance/incomplete knowledge
 - Laziness/complexity
 - Strategic unpredictability

- Reasoning about evidence
 - Bayes Rule
Fundamentals: Decision Rules

- Maximize expected value
 - *Weight the value for each outcome by likelihood*
 - *Assumes risk neutrality*
- Maxmin value
 - *Maximize the worst-case value*
 - *“Paranoid” solution*
- Minimize regret
 - *Minimize “opportunity loss”*
 - *How much better could I have done?*
- What if there are multiple decision makers?
 - *Game theory/adversarial reasoning*
Security Game

2 players
2 targets
1 defender resource

Target 1	Target 2
1, -1 | -2, 2
-1, 1 | 2, -1
Security Game

2 players
2 targets
1 defender resource

<table>
<thead>
<tr>
<th></th>
<th>Target 1</th>
<th>Target 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target 1</td>
<td>1, -1</td>
<td>-2, 2</td>
</tr>
<tr>
<td>Target 2</td>
<td>-1, 1</td>
<td>2, -1</td>
</tr>
</tbody>
</table>

Play this game against several different opponents
Play at least twice as the defender, and twice as the attacker
Game Solutions

Best Response

<table>
<thead>
<tr>
<th></th>
<th>Target 1</th>
<th>Target 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target 1</td>
<td>1, -1</td>
<td>-2, 2</td>
</tr>
<tr>
<td>Target 2</td>
<td>-1, 1</td>
<td>2, -1</td>
</tr>
</tbody>
</table>
Game Solutions

Best Response

<table>
<thead>
<tr>
<th></th>
<th>Target 1</th>
<th>Target 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target 1</td>
<td>1, -1</td>
<td>-2, 2</td>
</tr>
<tr>
<td>Target 2</td>
<td>-1, 1</td>
<td>2, -1</td>
</tr>
</tbody>
</table>
Game Solutions

Best Response

<table>
<thead>
<tr>
<th>Target 1</th>
<th>Target 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target 1</td>
<td>1, -1</td>
</tr>
<tr>
<td></td>
<td>-2, 2</td>
</tr>
<tr>
<td>Target 2</td>
<td>-1, 1</td>
</tr>
<tr>
<td></td>
<td>2, -1</td>
</tr>
</tbody>
</table>
Game Solutions

Mixed Strategy

<table>
<thead>
<tr>
<th></th>
<th>Target 1</th>
<th>Target 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>1, -1</td>
<td>-2, 2</td>
</tr>
<tr>
<td>Target 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>-1, 1</td>
<td>2, -1</td>
</tr>
<tr>
<td>Target 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nash Equilibrium

A mixed strategy for each player such that no player benefits from a unilateral deviation.
Nash Equilibrium

A mixed strategy for each player such that no player benefits from a unilateral deviation.
Stackelberg Equilibrium

Attackers use surveillance in planning attacks

Defender commits to a mixed strategy

\[
\begin{array}{c}
\{0.1,0.9\} \\
\text{...} \\
(-0.9, 0.9) \quad (1.8, -0.9) \\
\{0.5,0.5\} \\
(0, 0) \quad (0, -0.5)
\end{array}
\]
Standard (Compact) Security Game

Targets

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reward</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Penalty</td>
<td>-5</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>Reward</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Penalty</td>
<td>-3</td>
<td>-1</td>
<td>-6</td>
</tr>
</tbody>
</table>

Identical Resources

Payoffs for a target depend only on coverage of that target.
Standard (Compact) Security Game

<table>
<thead>
<tr>
<th>Targets</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reward</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Penalty</td>
<td>-5</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reward</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Penalty</td>
<td>-3</td>
<td>-1</td>
<td>-6</td>
</tr>
</tbody>
</table>

Defender strategy: decide probability to cover each target, subject to resource limitation

If there is no coverage, which target is attacked?
ARMOR: Multiple Adversary Types

- *Uncertainty* about attacker payoffs (different adversaries)
- Bayesian game models

<table>
<thead>
<tr>
<th>P=0.3</th>
<th>P=0.5</th>
<th>P=0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term #1</td>
<td>Term #2</td>
<td>Term #1</td>
</tr>
<tr>
<td>Term #1</td>
<td>5, -3</td>
<td>-5, 5</td>
</tr>
<tr>
<td>Term #2</td>
<td>-1, 1</td>
<td>2, -1</td>
</tr>
</tbody>
</table>

Uncertainty about attacker payoffs (different adversaries)

Bayesian game models

<table>
<thead>
<tr>
<th>Term #1</th>
<th>Term #2</th>
<th>Term #3</th>
<th>Term #4</th>
<th>Term #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>121</td>
<td>112</td>
<td>211</td>
<td>...</td>
</tr>
<tr>
<td>3.3, -2.2</td>
<td>2.3,...</td>
<td>2.3,...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>-3.8, 2.6</td>
<td>...,...</td>
<td>...,...</td>
<td>...</td>
<td>222,...</td>
</tr>
</tbody>
</table>
ARMOR Results

ARMOR v/s Non-weighted (uniformed) Random for Canines

- ARMOR: 6 canines
- ARMOR: 5 canines
- ARMOR: 3 canines
- Non-weighted: 6 canines
Questions?